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Abstract

This paperis concernedwith probabilitydensityestimationin high-dimensional settings.Simplifiedgeometricargu-
mentsandsupportingexamplespoint to a performance bound which limits algorithmperformance to that of either(1)
nearest-neighbor or (2) single-kernelPDFestimators.A methodof monitoringPDFestimationperformance aswell as
recommendations for neuralnetandclassificationalgorithmpractitionersis provided.

1 Introduction

Thesubjectof this paper is non-parametric probability densityfunction (PDF) estimationin high-dimensional settings.
As such,it is relevant to signalprocessing, estimation,andclassification.

We refer hereinto the datadimension as
�

, the largestnumber of random variables to be considered at once,i.e.
in a joint distribution. Whenthe form of thePDF to estimateis entirelyunknown andmustbeestimatedfrom training
data,the PDF value itself at quantized “grid cell” locationseffectively become parametersto estimate.The number of
parameterseffectively risesexponentiallywith

�
. Therapidincreasein complexity of systemshasbeentermedthecurse

of dimensionality by RichardBellman[1]. Indeed, it hasbeenshown thatgiventhat thePDFmeetscertainsmoothness
assumptions, theamount of trainingdatarequired for nonparametric estimatorsrisesexponentiallyin

�
[2]. It is conjec-

turedby someresearchersthat theunderlying structureof thedatain mostproblemshasa dimensionrarely larger than
about 4 or 5 [3]. Thus,somekind of transformationor projection ontoa lower dimensional manifold is recommended.
Themostobviousmethod of dimensionreductionis simplyto discardtheleastimportantfeatures,aprocesscalledfeature
selectiona well-studiedproblemin itself [4], [5]. Thedilemma is that the true informationcontent of a featurecannot
bemeasuredwithout a good joint PDFestimateof all the features. On theotherhand,a good PDFestimatecannot be
obtained at ahighdimension. As featuresareadded,increasing

�
, it is possiblethatalgorithmperformancemayactually

getworsein spiteof informationcontentof theaddedfeature.Likewise,eliminating aninformation-bearingfeaturemay
actuallyimprove performance. Dimensionreduction is a subjectof ongoing research[6], [7], [3], [8]. Thatdimensional-
ity is anoverriding problemmayat first contradict thefactthatPDFestimatorshave beenemployedsuccessfullyat very
high dimension. In this paper, we argue that in suchapplications,truePDFestimationis not happening. What is really
happeningis explainedbelow in thecontext of oneof two possibleprimitivePDFestimators.

Projection of thePDFestimateontooneor two dimensionsis aneffectivemethodof monitoring PDFaccuracy. If the
low-dimensionalprojectionsareflawed,somustbethePDFestimateon ��� . But accurateprojectionsdo not guarantee
good PDF estimates. It is easyto be “fooled” by the apparent size of the kernels. An example that illustratesthis
phenomenon is thefollowing [3]. Let themarginal distributionof eachdatadimensionbedistributeduniformly within the�
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interval ���
	��
	�� . Thedatais thereforecontainedin thehypercube���
	���	���� . Imaginea radius-1hypersphereinscribed
insidethehypercube,touchingthecenterof each“f ace”.As

�
grows,thefractionof datathatfalls insidethehypersphere

falls exponentiallyto zero.This is counter-intuitive becausetheinscribedhypersphereis very largewhenprojectedonto
any axis.We suggestanalternateapproachthatis notaseasilyfooled.

The objectof this paperis not to offer a solutionto the dimensionality problem, but to offer an explanation for its
existenceandargue that it is not solvable whenattackedasa high-dimensionalproblem. Solutions areoffered in other
papers [9], [10].

We begin thepaperwith a geometric argumentto exposethenature of thecurseof dimensionality. This argument is
conciselyrepresented by heuristicbound on performance.This providesa settingfor theremainder of thepaper. Next,
we suggestmethods of assessingPDF accuracy that do not rely on classifierperformance. We endthe paperwith our
concluding remarks andrecommendations.

2 Heuristic Performance Bounds

Theimpetus for this work wasthatin highdimensional problems,it wasfoundfrom experiencethat:

1. Complex classifiersrarelywork betterthansimpleclassifiers(Fisher’s lineardiscriminant, quadratic Bayesian,or
NearestNeighbor classifiers).

2. Simpleclassifierstendto improveasthefeaturesetdimensionincreases.

3. Complex classifiersimprovewith increasingdimensioninitially, but thenperformancestopsimproving,or dropsas
dimensionincreases.As dimension continuesto increase,performancesometimesimproves.

Theargumentsto bepresentedattemptto explain this behavior usingsimplegeometric arguments.By no meansdo we
attemptto find quantitativeresultsthatcanbeverifiedexperimentally. However, becausetheargumentsarebasic,it should
beclearto thereaders whetheror not theassumptionsareapplicable to theirproblems.

1. This paperassumesthat performance of algorithms is dependentonly on PDF estimation.Clearly classification
performancedependsonly on accuratePDFestimationin theboundaryregions betweensignalclasses.Yet, it can
bearguedthatif we limit ourselvesto speakingabouttheselocalizedregions only, thesameargumentshold.

2. We makeargumentsbasedonkernel-basedPDFestimation.It canbesaidthatourargumentsdonotapplyto other
methods.Howeverconsiderthat:

(a) theminimum probability of error is achievedin theoryby theprobabilistic Bayesianclassifierwhich requires
thePDF[11],

(b) kernel-basedPDFestimatorsconverge to thetruePDFgivensmoothnessof thePDF, enoughdataandenough
kernels[12],

(c) Most Neural NetworksactuallyarePDFestimators[13].

To develop a languagefor theargumentsto bepresented,we consider four broad classesof PDFestimators:

1. Variable Basis Function (VBF) ThePDFis approximatedasa sumof positivebasisfunctions. It is assumedthat
the approximationalgorithm maximizesthe approximation fit to the training databy determining the bestsetof
basisfunctionlocations andindividualshapesandsizes.

2. Uniform Basis Function (UBF) The PDF is approximatedas a sum of positive basisfunctions with the con-
straint that all basisfunctionsareidenticalexcept for location. This includesPNN andhomoscedasticGaussian
mixturesandappliesin a broad senseto to thecasewhenall basisfunctions have the samevolume, for example
strophoscedasticmixtures[14]. It is assumedthattheapproximationalgorithm maximizestheapproximation fit to
thetrainingdataby determining thebestsetof basisfunction locationsandoverall basisfunction size.

3. Single Basis Function (SBF) Thisis thespecialcaseof thefirst two methodswherethereis onlyonebasisfunction.
It is assumedthattheapproximationalgorithm maximizestheapproximationfit to thetrainingdataby determining
thebestsinglebasisfunction (location, shapeandsize).Examplesarethequadratic-Bayesianclassifieror Fisher’s
lineardiscriminant.
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4. K-Nearest Neighbor (KNN) Theprobability density is estimatedfrom thevolumeof aball (orotherbasisfunction)
thatcontains K samplesfrom thetraining set.

In this paper weusethetermskernelandbasisfunction interchangeably.
Considerthe problem of estimatingan arbitrary PDF from � datasamplesof a random variable � usinga UBF

PDF estimate.ThePDF is thenusedin analgorithm whoseperformancemaybequantified. Consider� to be infinite-
dimensional (suchdatamay be formedby adding random non-informative datato eachsampleof a finite-dimensional
dataset). Let ��� bethefirst

�
dimensionsof � , with PDF ����������� . Let ����� ��� definetheexpectedperformanceof the

algorithm when����������� is used.Clearly, ����� � �"!#�$����% �'& �)(#*,+
Let -� � �.� � � beanestimateof � � �.� � � derived from � datasamples.Assumethat���/-� �$�"0#�$������� +

Let the probability massof � � �.����� be confined (mostly) to the
�

-dimensional hypercube definedby 1204365708 �:9<;=	>� +?+�+ � � and let @BA be the smallestdimension of local variations in � � �����C� . The determination of @DA is
illustratedin Figure1. In thefigure, @ A is determinedseparatelyfor eachdimensionby thesmallestvariationor “peak”
in a sectionalsliceat a fixedvalueof theotherdimension(s). It is the largestkernel width in thatdimensionthata UBF
estimatorof thePDFcouldhaveandstill provideanaccurateapproximation to thetruePDF. For simplicity, weassumeit
is thesamefor eachdimension, i.e. @ A?E 5 ;F@ A . Let

* �.�<� � �HG2�H@B� betheexpectedalgorithm performancewhenthePDF
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Figure 1: Determinationof @DA from datasamples.

is approximatedusinga UBF mixture with G mixture componentsof diameter@ , andobtained from � datasamples.
TheHeuristicPerformanceBoundsstatethat* �I�J� � �KG2�L@M�N0 �$��� � �PO��.@M�* �I�J� � �KG2�L@M�N0 �$��� � ��QR�IG2�H@D� � � + (1)

We now describeeachterm.S We havedescribed�$��� � � , the idealexpectedperformance,above.S O��.@M� is thePotential Accuracy for G infinite. This termrepresentsthelossdueonly to thediameterof themixture
components, @ exceeding @�A (i.e., for G infinite). OT�.@M� is suchthatUWVYXZ'[�ZK\ O��I@B�]; 	

O��.@_^?�`0 O��I@�ab�'�c@�aed#@_^UWVYXZ'[
f O��I@B�]; g ( 1
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Thelaststatementsaysthatperformancedoesnotgoto zero,evenfor very largekerneldiameters. Onthecontrary,
performanceapproachesthatof a SBFPDFestimator. An exampleof a functionmeetingtheserequirementsis

O��I@B��; h gjik�l	m�ngo� @�Abpq@	"i�@>A/p/@�r + (2)

S Q#�sG2�H@D� � � represents thelossdueonly to volumecoverage.Clearlythevolumeoccupiedby theapproximationis
no greater than Gt@D� . Let volumeoccupied by �u���.����� bedenoted Q A ;v�xw 8 �l� , where 1ydzw{0)	 . Thepoint at
which thevolume of theapproximationmatchesthevolumeoccupiedby �e��������� is when Gt@B��;2Q A . Definethis

point to be @D|,};v~/� \������ ;�w 8 G�� �� . Thus,UYVYXZ'[
f Q��IG2�H@D� � ��; 	
Q��sG2�L@ ^ � � �`0 Q��IG2�L@ a � � �'�n@ a ( @ ^UWVYXZ'[ A Q��IG2�H@D� � ��; � ( 1

Thelaststatementsaysthatperformancedoesnotgoto zero,evenfor verysmalldiameters.Onthecontrary, perfor-
manceapproachesthatof aKNN classifier. Wehaveassumedthat G is essentiallyfixedby theamount of available
data,� . Theamount of dataneededto estimatetheparametersof eachmixture componentis approximatelylinear
in
�

(e.g.[15]). This weakdependencemaybeignored. It should beexpected that Q��IG2�H@D� � � drops veryrapidly
to � as @ falls below @�| . An exampleof a functionmeetingtheserequirementsis

Q��sG2�L@$� � �P; h �yik�l	m����� Gt@��Gt@ � ik�xw 8 � � r +
Wehavementionedalreadythework of Stone[2] whichderives thefactthataccuratePDFestimationrequires � to
increaseexponentially in

�
. This corroboratestheabove analysisif we supposethattheamount of trainingdatais

roughly proportional to G , say �c;t��G . In order to remainbelow thecritical point of volume collapse,we need�4!����D� fZ7� � . Someresearchers havederivedsimilar expressionsbasedonspecialcases[6],[3], [16].

At this point, it is possibleto make a very important observation: O��I@B� falls as @ increasestoward
8

, but Q��IG2�L@$� � �
falls rapidly as @ decreasesbelow @$| . But, @_| }; ~ � \��� �� ;�w 8 ~ ^��� �� approachesw 8 as

�
rises.This is illustratedin

Figure2. So,it maybeconcludedthatas
�

increases,performancebecomeslimited to either g or � , depending on the
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Figure2: Ideal performancecannever beachievedfor high
�

. EitherPotentialAccuracy or VolumeCoverageis small.
For this plot, G�;�	����u��;zg�;k1 + 	>��@ A ; + 	 , w7;t	
valueof @ . We call thecondition when @jdk@ | andperformance approaches� thecollapsedkernel(CK) effect. We call
thecondition whenperformanceapproachesg theexpandedkernel(EK) effect. Wecall this thefundamentaltradeoff, the
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tradeoff associatedwith oversmoothingvs. undersmoothing. While many practitionersattemptto find a compromise,we
argue thatat highdimensions,onecanneverescapesuffering thebrunt of oneor theother.

It is possibleto relateCK andEK effectsto “primiti ve” classifierssuchasSBFandKNN. Theperformanceof anSBF
classifieris g becausetheSBFkernel is matchedto thevolume of thedataPDF. Theperformanceof a KNN classifieris� . A UBF or VBF classifierwith very narrow basisfunctions( @nd�@�| ) anda kernellocatedat eachtrainingsampleis
equivalentto a KNN. It canbearguedthatUBF andVBF classifierswith morethanonetrainingsampleperkernel still
have a similar behavior becauseof the narrownessof the kernels. From this standpoint, it is clearwhy somecomplex
NeuralNetworks work nobetterthatsimpleSBFor KNN classifiers.

In classificationproblems, thevaluesof g and � depend on thecluster-shapesandrelative locations of clustersin the
high-dimensional space.

1. If theclassesarewell-separatedandunimodal, g and � maybothbehigh andeitheranSBFor Nearest-Neighbor
classifierwill work well.

2. If they areunimodal but notwell separated,g will behigh, but � will below andSBFclassifieris recommended.

3. If their shapesarecomplex, yet arewell separated,� will be high, but g will be low anda Nearest-Neighbor
classifieris recommended.

4. In practice,theabovetwoconditionsmayexist simultaneously in differentpartsof thedataspacebecausereal-world
datais nothomogeneous.VBF classifiersmayalsoexhibit a little of bothconditions.

3 Supporting Example

Virtually all PDFestimationmethods(includingneuralnets[13]) areconsistentin thesensethatthereis acertaintendency
to converge to the true PDF estimategiven enough training dataand/orlow enough dimension. There arenumerous
methods of PDF estimation(for comparative studiesandoverviews see[4], [3], [17]). In this example, we utilize a
multivariate PDF estimationapproachbasedon a heteroscedasticGaussianmixture (GM) approximation. A widely
acceptedtechnique for estimatingthe parameters of the GM modelis the EM algorithm[11],[18]. The EM algorithm
suffersfrom numerical problemswhenthereis insufficient dataleading someresearchersto avoid it [17] or constrainthe
covariancesof thekernelsto be identical[19], or of uniform sizewith variable rotation[14]. Adding to thecovariance
estimatesbasedonaBayesianprior densityargumentis thepreferredmethod of dealingwith theproblem[20], [21]. This
involvessimplyaddingadiagonal matrix,representinganindependent measurementnoiseprior, to thekernelcovariances
at eachiteration. We haveobtainedexcellentresultswith this method.

WhenthePDFis estimatedby optimizingthelikelihoodfunction,suchasanEM algorithm, thetotal likelihood of the
trainingdatais maximized. Therefore,kernelsarecaught in opposingforces.Kernelsmustbecome smallerto increase
their likelihood value,but larger to encompassmoredata.As

�
increasesvith � and G fixed,agivennumberof training

samplesoccupiesanexponentiallydecreasing fractionof thedatavolume.Kernelstendto becomeassociatedwith disjoint
“subsets”of trainingdataandtightly enclosethedatasubsetsin order to maximizethelikelihood. In thelimit, thedata
“subsets”occupy subspacesof zerovolume. However, dependingon how the algorithm is initialized, thesesubspaces
have arbitrary orientationsandtherefore appear “wide” whenprojectedontoa given2-dimensions.As a visualexample,
consideraflat disk-shapedkernel in a3-dimensionalvolumeenclosing3 widely separatedtrainingdatapoints in aplane.
Whenprojectedonto2 dimensions,unlessthetwo basisfunctionsuponwhich it is projectedarealignedjust right, it will
appearwide. Thus, it makessensethatunlesskernel width is constrained, thealgorithm will tendtowardCK effect, yet
theprojectionof thePDFapproximation onto2 dimensions will widen.Theuseof Bayesianpriors,asmentionedabove,
preventsthekernels from collapsingto zerovolume,but thefractional volumestill decreasesexponentially.

Figures3 through 5 illustrate this effect. The upper portion of eachplot is a scatterdiagram of the datasamples
availablein the trainingset. Thelower portion is a contour plot of the individual kernelsat a fixed level. TheGaussian
Mixture is marginalized(effectively integratedover all the remaining dimensions). Thefiguresrepresenta sequenceof
increasing

�
. Thenumber of kernelsis 5 in all cases.Theapparent kernel widthsgradually widen.

4 Monitoring PDF Accuracy

We have argued that PDF approximation is the weak link in high-dimensional algorithm performance. But how is it
possibleto monitorPDFapproximationaccuracy withoutknowing thetruePDF?In this section,we presentsomeideas.
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Figure6: Histogramsof theLogLikelihood for TestingdataandSyntheticdata,
� ;z�>� . Solid: testing,dashed: synthetic.
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Figure7: Histograms of theLog Likelihood for TestingdataandSyntheticdata,
� ;z� . Solid: testing,dashed:synthetic.

In oneandtwo dimensions,it is possibleto createplotssuchasFigures3 to visually inspectthePDFapproximation
comparingwith actualdatahistograms. But in higher dimensions,it is no longer feasible.It is necessaryto projectthe
multidimensionaldataandPDF approximation down to oneor two dimensions to visualizeit. But still, suchmethods
depend onthechoice of projection.

An ideawe like is the following: Let therebe 3 datasets,training data ���$� , testingdata ����� , andsyntheticdata�� B¡ . After obtaining a PDFestimate -���.��� from � ��� , generatea populationof syntheticdata �¢ B¡ basedon -������� . Then,
comparehistograms of

UY£>¤ -����� � � � , and
UY£>¤ -�o���o �¡q� . Comparing thesehistograms canlocatetelltaleproblems.If -���.��� is a

goodapproximationto ���.��� , thetwo histogramswill match.However, if CK effect occurs,
UY£>¤ -����� � � will exhibit a very

wide spreadof valuesincluding somevery largenegative samples.If thetestingdatafalls insidethenarrow kernels,the
likelihood will be too high, if it falls outside,it will bemuchtoo low. If EK effect wereto occur, thespreadof values
wouldbenarrow. Furthermore,EK effect wouldbequitevisible in the2-D projections.

ConsiderFigure6, createdfor a PDFestimateof dimension�>� (seeFigure5). This shows thetestingdatahasboth
higher andlowervaluesof likelihood thanthesynthetic data,indicating CK effect.

Theexperimentwasrepeatedfor thecaseof Figure3 (
� ;)� ) andtheresultis plottedin Figure7. Thehistograms

aremuchbettermatchedindicating a betterPDFestimate.Themethod compressesanenormousamount of information
into a singleplot andmayprovide thebasisof non-subjective measuresof fit suchastotal log-likelihoodof testingdata.
This methodis not foolproof sincethe matchingof the log-likelihood distributions is not a guaranteeof a correct PDF
estimate.Combinedwith the2-D projection method, however, it is a powerful test.
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5 Conclusions and Recommendations

Startingfrom thepremisethatdimensionality playsa centralrole in algorithmperformance,a approximate“conceptual”
equation of dimensionality hasbeenpresented. The behavior of classifiersat higherdimension hasbeenexplained in
thecontext of this relationship. Specifically, classifiersshow a tendency to perform similarly to oneof two “primiti ve”
classifiers:a nearestneighborclassifieror a single-kernelclassifier, or somewherebetweenthetwo.

We highly recommenddoing threethings whenever a new PDF estimatoris evaluated: (1) Plotting marginalized
PDFintensityanddatascatterdiagrams in 2 dimensionsor datahistogramstogetherwith marginalizedPDFcurves, (2)
plotting KNN andSBF performanceon the samegraph asany new algorithmperformance, (3) plotting histogramsof
log-likelihoodfor the two datapopulations: testingdataanddatasynthesizedfrom the trainedPDF model. This will
(a) locatePDF approximation errors, (b) put performancein the perspective of “primitive” methods (c) anddetermine
whetherCK or EK effects arehappening.
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